Optimal and suboptimal smoothing algorithms for identification of time-varying systems with randomly drifting parameters
نویسنده
چکیده
Noncausal estimation algorithms, which involve smoothing, can be used for off-line identification of nonstationary systems. Since smoothing is based on both past and future data, it offers increased accuracy compared to causal (tracking) estimation schemes, incorporating past data only. It is shown that efficient smoothing variants of the popular exponentially weighted least squares and Kalman filter based parameter trackers can be obtained by means of backwardtime filtering of the estimates yielded by both algorithms. When system parameters drift according to the random walk model, the properly tuned two-stage Kalman filtering/smoothing algorithm, derived in the paper, achieves the Cramér-Rao type lower smoothing bound, i.e. it is the optimal noncausal estimation scheme. Under the same circumstances performance of the modified exponentially weighted least squares algorithm is often only slightly inferior to that of the Kalman filter based smoother.
منابع مشابه
Iterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملA Multi-objective optimization model for project scheduling with time-varying resource requirements and capacities
Proper and realistic scheduling is an important factor of success for every project. In reality, project scheduling often involves several objectives that must be realized simultaneously, and faces numerous uncertainties that may undermine the integrity of the devised schedule. Thus, the manner of dealing with such uncertainties is of particular importance for effective planning. A realistic sc...
متن کاملSIMULATED ANNEALING ALGORITHM FOR SELECTING SUBOPTIMAL CYCLE BASIS OF A GRAPH
The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 44 شماره
صفحات -
تاریخ انتشار 2008